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Abstract-The Swiss Mathematician Leonhard Euler is considered as the Father of Graph theory. Today graph 
theory has matured into a full-fledged theory from a mere collection of challenging games and interesting puzzles.  
Peculiarity of Graph theory is that it depends very little on other branches of Mathematics and is independent in 
itself.  Graph coloring enjoys many practical applications as well as theoretical challenges.  Graph coloring is still a 
very active field of research. This paper consists of III Sections.  Section I involves Introduction to Graph theory and 
Introduction to Graph Coloring. Section II is Vertex Coloring and Upper Bounds:  in which Chromatic Polynomials 
and Chromatic Partitioning,   Properties of Chromatic Numbers, Color Class, some important Theorems, 
Propositions, are discussed.  In Section III Edge Coloring, Enumerative Aspects are discussed. 

Index Terms- Coloring of a Graph, Chromatic Polynomials, Chromatic Number, Edge Coloring, Vertex Coloring, 
Upper Bounds and Coloring of planar graphs. 

Section I: Introduction  

1.1GraphTheory:

Graph theory is widely regarded as the most 
delightful branch of mathematics.  This is because of 
its twin nature; it contains the cleverest proofs in all 
the abstract reasoning and it has the most 
comprehensive range of applicability to any 
contemporary science.  Today graph theory has 
matured into a full-fledged theory from a mere 
collection of challenging games and interesting 
puzzles.  Peculiarity of Graph theory is that it 
depends very little on other branches of Mathematics 
and is independent in itself. 

         Many Mathematicians have contributed to the 
growth of this `theory. EULER (1707-1782) became 
the father of graph theory when he settled a famous 
unsolved problem of his days called the Konigsberg 
Bridge Problem.   

         The Konigsberg bridge problem is regarded as 
the first paper in the history of graph theory. Two 
islands C and D, formed by the pregel river in 
Konigsberg were connected to each other and to the 
banks A and B with seven bridges. The Konigsberg 
bridge problem asks if it is possible to find a walk 
through the city of Konigsberg (now Kaliningrad, 
Russia) in such a way that we cross every bridge 
exactly once. Euler observed that the choice of route 
inside each land mass is irrelevant and thus the 
problem can be modeled in abstract terms by 
representing land masses with points (or capital 
letters as in Euler’s original solution) and bridges 
between them with links between pairs of points. 
Such an abstract description of the problem naturally 
leads to the notion of a graph. 

Definitions and Notations: 

Graph:  A graph G = (V, E) consists of an arbitrary 
set of objects V called vertices and a set E which 
contains unordered pairs of distinct elements of V 
called edges.   

Adjacent:  Two vertices in a graph are adjacent if 
there is an edge containing both of them.  Two edges 
are adjacent if they contain a common vertex.  
Adjacent vertices are called neighbors.   

Degree: For any vertex v in a graph, the degree of the 
vertex is equal to the number of edges which contain 
the vertex.  The degree of v is denoted by d(v).   

Regular Graph: A graph in which every vertex has 
the same degree is called a regular graph.  If all 
vertices have degree k, the graph is said to be k-
regular.   

Complete Graph:  The complete graph on n vertices 
Kn consists of the vertex set V = {v1,v2,…,vn} and 
the edge set E containing all pairs (vi,vj) of vertices 
in V.  

A bipartite graph (bi – graph ) G is a graph whose 
vertex set V(G) can be partitioned into subsets  V1 
and V2 such that every edge in G joins a vertex in V1   
to a vertex in V2  .   If G contains every edge joining a 
vertex of V1 to every vertex of V2, then G is called a 
complete bipartite graph.  If V1 andV2 have m and 
n vertices we write G = Km, n. 

A star is complete bigraph K1, n. 
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 Isomorphic:  Two graphs are isomorphic if there 
exists a one-to-one correspondence between their 
vertex sets (i.e. a re-labeling) which induces a one-to-
one correspondence between their edge sets.  More 
formally, if L is a re-labeling which maps the vertices 
of G to the vertices of H, then the edge set of H is 
precisely the set of edges (L(v),L(w)) where (v,w) is 
an edge in G.   

Sub-graph: A graph G1 = (V1, E1) is a sub-graph of 
G2 = (V2, E2) whenever V1 ⊆ V2 and E1 ⊆ E2.  

Path: A path of length n is the graph Pn on n+1 
vertices {v0, v1, v2, …, vn} with n edges (v0,v1), 
(v1,v2), …, (vn-1,vn). 

Cycle: A cycle of length n is the graph Cn on n 
vertices {v0, v1, v2,…, vn-1} with n edges (v0, v1), 
(v1, v2), …, (vn-1,v0).  We say that a given graph 
contains a path (or cycle) of length n if it contains a 
sub-graph which is isomorphic to Pn (or Cn).  

Connected: A graph that contains a path between 
every pair of vertices is connected.  Every graph 
consists of one or more disjoint connected sub-graphs 
called the connected components.   

Distance: The distance between two connected 
vertices is the length of the shortest path between the 
vertices.   

Diameter: The diameter of a connected graph is the 
maximum distance between any two vertices in the 
graph.   

Forests and Trees:  A graph which does not contain 
a cycle is called a forest.  If it is a connected graph, it 
is called a tree.  The connected components of a 
forest are trees.   

End-points and Isolated Vertices: An end-point is a 
vertex with degree 1. An isolated vertex is a vertex 
with degree 0.   

Hamiltonian Graph: A graph which contains a 
Hamiltonian cycle, i.e. a cycle which includes all the 
vertices, is said to be Hamiltonian.   

Walks, Trails, and Circuits:  A walk in a graph is a 
sequence of adjacent edges. A trail is a walk with 
distinct edges.  A circuit is a trail in which the first 
and last edge are adjacent.   

Eulerian Graph:  A trail which includes all of the 
edges of a graph and visits every vertex is called an 
Eulerian Tour.  If a graph contains an Eulerian tour 
which is a circuit, i.e. an Eulerian circuit, the graph is 
simply said to be Eulerian.   

A graph is acyclic if it has no cycles.  A tree is a 
connected acyclic graph. 

A clique is a subset of vertices of an undirected 
graph such that its induced subgraph is complete. The 
clique graph K (G) of a graph G is the intersection 
graph on the family of cliques of G. 

In a graph G, a vertex and an edge incident with it are 
said to cover each other.  A set of vertices which 
cover all the edges is a vertex cover of G.  

The vertex covering numberα0(G) of G is the 
minimum number of vertices in a vertex cover.  A set 
of edges, which cover all the vertices, is an edge 
cover of G.  

The edge covering numberα1(G) is the minimum 
number of edges in an edge cover.  A set of S of 
vertices in G is independent if no two vertices in S 
are adjacent.  

The Independence numberβ0(G) of G is the 
maximum cardinality of an independent set of 
vertices.  A set F of edges in G is independent if no 
two edges in F are adjacent.   

The edge independence number (or the matching 
number) β1(G) is the maximum cardinality of an 
independent set of edges.  The maximum number of 
mutually adjacent vertices in G is the clique 
number(G) of G and edge clique number ω(G) of G 
is the maximum number of mutually adjacent edges 
in G. 

1.2 Graph Coloring: 

Graph coloring is one of the early areas of graph 
theory. Its origins may be traced back to 1852 when 
Augustus de Morgan in a letter to his friend William 
Hamilton asked if it is possible to color the regions of 
any map with four colors so that neighboring regions 
get different colors. This is the famous four color 
problem. The problem was first posed by Francis 
Guthrie, who observed that when coloring the 
countries of an administrative map of England only 
four colors were necessary in order to ensure that 
neighboring counties were given different colors. He 
asked if this was the case for every map and put the 
question to his brother Frederick, who was then a 
mathematics undergraduate in Cambridge. Frederick 
in turn informed his teacher Augustus de Morgan 
about the problem. In 1878 the four color problem 
was brought to the attention of the scientific 
community when Arthur Cayley presented it to the 
London Mathematical Society. It was proved that 
five colors are always sufficient, but despite heavy 
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efforts it was not until 1977 that a generally accepted 
solution of the four color problem was published. 

Graph coloring is a major sub-topic of graph theory 
with many useful applications as well as many 
unsolved problems.  There are two types of graph 
colorings we will consider.   

Vertex-Colorings and Edge-Colorings:   

        Given a set C called the set of colors (these 
could be numbers, letters, names, whatever), a 
function which assigns a value in C to each vertex of 
a graph is called a vertex-coloring.  A proper vertex-
coloring never assigns adjacent vertices the same 
color.  Similarly, a function which assigns a value 
from a set of colors C to each edge in a graph is 
called an edge-coloring.  A proper edge-coloring 
never assigns adjacent edges the same color.   

In its simplest form Graph Coloring,   is a way of 
coloring the vertices of a graph such that no two 
adjacent vertices share the same color, called a 
vertex coloring. Similarly, an edge coloring assigns 
a color to each edge so that no two incident edges 
share the same color, and a face coloring of a planar 
graph assigns a color to each face or region so that no 
two faces that share a boundary share the same color. 

K-Coloring:  A coloring of a graph using a set of k 
colors is called a k-coloring.  A graph which has a k-
coloring is said to be k-colorable.   

 The four-color theorem is equivalent to the statement 
that all planar graphs are 4-colorable.  Note that a 
graph which is k-colorable might be colorable with 
fewer than k colors.  It is often desirable to minimize 
the number of colors, i.e. find the smallest k. 

Chromatic Number:  The chromatic number of a 
graph G is the least k for which a k-coloring of G 
exists.   

Other types of colorings: 

Not only can the idea of vertex coloring be 
extended to edges, but also be added with different 
conditions to form new structures and problems. 

     Edge coloring: 
 
Edges are colored. 

     List coloring: 
 
Each vertex chooses from a list 
of colors. 

    List edge-coloring: Each edge chooses from a list of 
colors. 

  

 Complete coloring: 
 

Every pair of colors appears on 
at least one edge. 

 Acyclic coloring: 
 

Every 2-chromatic subgraph is 
acyclic. 

Strong coloring: 
 
 

Every color appears in every 
partition of equal size exactly 
once. 

Strong-edge coloring: 
 
 

Edges are colored such that each 
color class induces a matching 
(equivalent to coloring the 
square of the line graph). 

On-line coloring: 
 
 
 

The instance of the problem is 
not given in advance and its 
successive parts become known 
over time. 

Equitable coloring: 
 

The sizes of color classes differ 
by at most one. 

Total coloring: Vertices and edges are colored. 

Oriented coloring: 
 

Takes into account orientation of 
edges of the graph. 

 

Section II: Vertex Colorings and Upper Bounds: 

      When used without any qualification, a coloring 
is always assumed to be a vertex coloring, namely an 
assignment of colors to the vertices of the graph.  
Again, when used without any qualification, a 
coloring is nearly always assumed to be proper, 
meaning no two vertices are assigned the same color. 
Here, "adjacent" means sharing the same. A coloring 
using at most k colors is called a (proper) k-coloring 
and is equivalent to the problem of partitioning the 
vertex set into k or fewer. 

Vertex coloring is the starting point of the subject, 
and other coloring problems can be transformed into 
a vertex version. The convention of using colors 
comes from graph drawings of graph colorings, 
where each node or edge is literally colored to 
indicate its mapping.  In computer representations it's 
more typical to use nonnegative integers, and in 
general any mapping from the graph objects into a 
finite set can be used.  

Chromatic Number: The least number of colors 
needed to color the graph is called its chromatic 
number.   It is denoted by the symbol ψ(G), where G 
is a graph.  For example the chromatic number of a 
Kn of n vertices (a graph with an edge between every 
two vertices i.e., a Complete graph with n vertices), is 
ψ(Kn) = n.  A graph that can be assigned(proper)     
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k-coloring is k-colorable and it is k-chromatic if its 
chromatic number is exactly k. 

 

        Properties of Chromatic Numbers: 

1. A graph, which is totally disconnected, has 
isolated vertices.  No two vertices are adjacent.  
Therefore the graph is 1-chromatic. 
2.  A graph containing one edge or more edges is 
at atleast 2-chromatic. 
3.  A cycle with 3 vertices is 3-chromatic. 
4. A graph which is a cycle of 2n points is 2-
chromatic. 
5. A complete graph with p-vertices is p-
chromatic 
6.  A graph which is a cycle of 2n + 1 points is 3- 
chromatic. 
7. If Wn is a wheel, having one vertex at the 
centre and n-1 vertices along the circumference,   
ψ(Wn ) = 4  if n is even and   ψ( Wn ) = 3  if n is 
odd integer. 

 

Color Class: 

A color class is a set of vertices of a graph which are 
having the same color when a coloring is done to a 
graph. 

Chromatic Polynomials and Chromatic 
Partitioning: 
 
The chromatic polynomial counts the number of 
ways a graph can be colored using no more than a 
given number of colors. 
 In general, a given graph G of n vertices can be 
properly colored in many different ways using a 
sufficiently large number of colors.  This property of 
a graph is expressed elegantly by means of a 
polynomial.  This polynomial is called the chromatic 
polynomial of G and is defined as follows: 

The value of the chromatic polynomial Pn(λ) of a 
graph with n vertices gives the number of ways of 
properly coloring the graph, using  λ or fewer colors. 

Let ci be the different ways of properly coloring 
G using exactly i different Colors.  Since i colors can 
be chosen out of λ colors in    

�λ
i� or  λCi different ways, 

i.e., there are    �λ
i� different ways of   properly 

coloring G using exactly i colors out of  λP  colors.              

      Since i can be any positive integer from 1 to n(it 
is not possible to use more than n colors on n 
vertices), the chromatic polynomial is a sum of these 
terms; that is, 

 Pn (λP) =∑ci �
λ
i�; i from 1 to n 

=c1
λ

1!  
R+c2

λ(λ−1)
2!

R+c3
λ(λ−1)(λ−2)

3!
R+

… . + cn λ(λ−1)(λ−2)(λ−3)……….(λ−n+1)
n!

  

Each ci has to be evaluated individually for the given 
graph.  For example, graph with even one edge 
requires at least two colors for proper coloring, and 
therefore, 

           c1=0.  
A graph with n vertices and using n different colors 
can be properly colored in n! Ways; that is,    

           cn= n! 

As an illustration, let us find the chromatic 
polynomial of the graph given in figure. 

 

Fig.1: 

P5(λ)=c1
λ

1!  
R+c2

(λ−1)
2!

R+c3
λ(λ−1)(λ−2)

3!
R+c4

λ(λ−1)(λ−2)(λ−3)
4!

R+ 

                c5
  λ(λ−1)(λ−2)(λ−3).(λ−4)

5!
 

Since the graph in figure has a triangle, it will require 
at least three    different colors for proper coloring.  
Therefore, c1=0 c2= 0 and c5= 5! , Moreover, to 
evaluate c3, suppose that we have three colors x, y, 
and z.  

These three colors can be assigned properly to 
vertices v1, v2, and v3 in 3! =6 different ways.  
Having done that, we have no more choices left, 
because vertex v5must have the same color as v3 and 
v4 must have the same color as v2.  Therefore, c3=6. 
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       Similarly, with four colors, v1, v2, and v3 can be 
properly colored in   4.6=24 different ways.  The 
fourth color can be assigned to v4   or v5, thus 
providing two choices.  The fifth vertex provides no 
additional choice.  Therefore,  

                      c4 =24 .2=48. 

Substituting these coefficients in P5(λ), we get, for 
the graph in figure. 

P5(λ)=λ(λ-1)(λ-2)+2 λ(λ-1)( λ-2)( λ-3)+  

λ(λ-1)( λ-2)( λ-3)( λ-4) 

         = λ(λ-1)( λ-2)( λ2-5 λ+7) 

The  presence  of  factors   λ-1  and  λ-2 indicates,  
that  G  is  atleast  3- chromatic. 

Theorems and Proofs: 

Theorem 1:  

A graph of n vertices is complete graph if and only if 

its chromatic    polynomial is,     

Pn(λ)= λ (λ -1)( λ -2)………( λ -n+1) 

Proof:  With λ colors, there are λ different ways of 
coloring any selected vertex of a graph.  A second 
vertex can be colored properly in exactly λ -1 ways, 
the third in λ -2 ways, the fourth in λ -3 ways…, and 
the nth λ -n+1 ways if and only if every vertex is 
adjacent to every other.  That is, if and only if the 
graph is complete. 

Theorem 2:   

Let aand b be two nonadjacent vertices in graph G.  
Let G’ be a graph obtained by adding edge between a 
and b.  Let G" be a simple graph obtained from G by 
fusing vertices a and b together and replacing sets of 
parallel edges with single edges.  Then Pn(λ) of G = 
Pn(λ) of G' + Pn–1(λ) of G" 

Proof:  The number of ways of properly coloring G 
can be grouped into two cases, one such that vertices 
a and b are of the same color and the other such that a 
and b are of different colors.  Since the number of 
ways of properly coloring G such that a and b have 
different colors = numbers of ways of properly 
coloring G' and number of ways of properly coloring 
G such that a and b have the same color. 

 

   Fig.2: 

Pn (λ) of G' + Pn-1(λ) of G" 

  = λ(λ-1)( λ-2)+ 2 λ (λ -1)( λ-2)( λ -3) + 

                          λ(λ-1)( λ -2)( λ -3)( λ -4) 

 = λ (λ -1) (λ -2) (λ2-5 λ +7) 

 = number of ways of properly coloring G 

= Pn (λ) of G  

Theorem 3:  

 Berge and Ore theorem:  In a k-chromatic graph,  

βo≥p
k
�Same as proving   βo ≥ p

ψ (G)
� 

Proof:  ψ(G) =k, because G is k – chromatic when 
we color with k colors, the vertices are partitioned 
into k – color classes, each color giving a class. 

Let c1,   c2 , …………ck be k color classes and  
P1P2………..Pk be number of vertices in the color 
classes respectively 

If βo in the point independence number, βogives the 
maximum number of nonadjacent points and they 
have the same color. 

Therefore βo = maximum of (P1,  P2 ,………..Pk ) 

βo  ≥P1, β0  ≥ P2…………………. βo  ≥Pi , ….. ……βo  ≥Pk 

Where Pi is the maximum value of numbers (P1,  P2 

,………..Pk ) 

βo+ βo ……………+ βo≥P1+ P2……… +Pi+……. Pk 

k βo≥ P1 + P2 +………..Pk 

βo ≥ p
k
Where p is the total number of points of the 

graph 

 i.e., βo ≥ p
ψ (G) 
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Theorem 4: 

  Harary and Gaddum theorem: ψ(G) ≤ p +1 –βo 
where p is the number of points in G. 

  Proof:  Let S be the maximal independent set 
containing βo points.     Maximum number of points 
in the set G – S is  p –βo .∴Maximum number of 
colors that could be used for coloring the set G – S is 
P –βo .Minimum colors are used for coloring, 
therefore ψ (G) – 1≤ P –βo 

                      ψ(G) ≤P –βo+1 

 

Note: By theorem: βo ≥ p
𝛙𝛙(G)

 

i.eψ(G ) ≥ p
βo

 

          By Theorem   ψ (G ) ≤ p −βo+1 

Combining the two inequalities, 
𝐩𝐩
𝛃𝛃𝐨𝐨
≤ ψ(G)  ≤p   – βo+ 1   . 

Definition:  

A   k – coloring of G is a labeling f: V (G) → 
{1……k}.  The labels are colors; A k coloring f is 
proper if x↔y implies f(x) ≠ f(y).  A graph G is k – 
colorable if it has a proper k – coloring.  The chromatic 
number ψ(G) is the minimum  k such that, G is k – 
colorable, i.e., if  ψ(G) = k , then  G is k – chromatic but  
if  ψ(H) ˂ k for every proper sub graph H of G,  then G 
is color critical  or  k – critical. 

Example: In a proper coloring each color class is an 
independent set, therefore, G is k – colorable if and 
only if G is k – partite. Below we illustrate optimal 
colorings of the 5 – cycle and the Petersen graph, which 
have chromatic number 3. 

 

 

   Fig.3: 

Definition: The Cartesian product of graphs G and H 
written G x H, is the graph with vertex set V (G) x V 
(H) specified by putting (u , v) adjacent to (u', v') if and 
only if   (1) u = u' and  v v'∈ E (H), or  (2) v =  v' and u 

u' ∈ E (G). 

Example:  Cartesian products:   The operation is 
symmetric:  G x H  ≅ H x G.  For example, c3x 
k2appears below, and Qk = Qk-1 x k2   if k ≥ 1.  In 
general, the edges of G x H can be partitioned into a 
copy of H for each vertex of G and a copy of G for 
each vertex of H. 

 

  Fig.4: 

UPPER BOUNDS: 

Most upper bounds on ψ(G) come from coloring 
algorithms. The bound ψ(G) ≤ n (G) where n(G) is 
the order of G.Uses nothing about the structure of G.   
We can improve the bound by coloring vertices 
successively using the “least available " color. 
 
Algorithm: (Greedy coloring).  The greedy coloring 
with respect  to a vertex ordering  v1,……………vn of V 
(G) is obtained by coloring vertices in the order 
v1,……………vn, assigning to vi the smallest-indexed 
color not already used its lower-indexed neighbors. 

PROPOSITION: ψ(G) ≤ ∆ (G) + 1  

Proof:  In a vertex ordering, each vertex has at most 
ψ(G)  earlier neighbors, so the greedy coloring 
cannot be forced to use more than ∆ (G) + 1 colors. 
This proves constructively that ψ(G) ≤∆ (G) + 1. 

The bound ψ(G) ≤ ∆ψ(G) + 1 results from 
every vertex ordering. By choosing the ordering 
carefully, we may obtain a better bound indeed, 
every graph G has a vertex ordering on which the 
greedy algorithm uses only ψ(G) colors. 

Lemma: If H is a k – critical graph, then    

∂ (H) ≥  k – 1 

Proof: suppose x is a vertex of H.  Because H is k – 
critical, H – x is k – 1 colorable.  If  dH(x)< k-1,  then 
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the k-1 colors used on H – x  do not all appear on  
N(x),  and we can assign a missing one to  x  to 
extend the coloring to H. This contradicts our 
hypothesis that H has no proper k – 1- coloring.  
Hence every vertex of H has degree at least k-1. 

Theorem 5: 

Brook’s theorem [1941]:  If a connected graph G is 
neither an odd cycle nor a complete graph,  

Then ψ(G) ≤ ∆ (G). 

Proof:   Suppose G is connected but it is not a clique 
or an odd cycle, and let k = ∆ (G).  We may assume 
that k ≥ 3, since G is a clique when k = 1, and G is an 
odd cycle or is bipartite when k = 2. 

 If G is not k-regular, choose vn so that d(vn) < k.  
Since G is connected, we can grow a spanning tree of 
G from vn, assigning indices in decreasing order as 
we reach vertices.  Each vertex other than vn in the 
resulting ordering v1 ….vn has higher indexed neighbor 
along the path to vn in the tree.  Hence each vertex 
has at most k – 1 lower indexed neighbors, and the 
greedy coloring uses at most k colors. 

        Fig.5: 

In the other case, G is regular.   If G has a   cut–
vertex   x, let G' be   a   component   of    G-x    
together with its edges to x.    The  degree  of   x  in  
G'   is  less  than   k,  and   we  obtain  a proper  k- 
coloring of  G'  as  above. 

By permuting the names of colors in each such sub 
graph, we can make the colorings, agree on x   to 
complete a proper k – coloring of G.  

We may thus assume that   G is    2- connected.    
Suppose G   has   an induced   3-vertex   path, with 
vertices we call   v1,   vn,   v2   in order, such that G – 
{v1, v2} is connected.  We can then number the 
vertices of a spanning tree of G – {v1, v2} using 
3,….,n  such that labels increase along paths to the 
root vn .  As  before, each vertex before n as almost k-
1 lower indexed neighbors.  The greedy coloring also 
uses atmost k-1 colors on neighbors of Vn , since V1 

& V2  receive the same color.   

 

             Fig.6: 

 Hence  it enough to show that every 2-connected k-
regular graph with k≥3 has three such vertices.  
Choose   vertex x .If K (G-x) ≥ 2, let v1 be x and let 
V2 be a vertex with distance two from x, which exists 
because G is regular and not a clique.  If   K (G-x) = 
1, then x has a neighbor in every block of G-x (since 
G has no cut-vertex).  Neighbors V1, V2 of x in two 
such blocks are non-adjacent.  Furthermore, G-{x, v1, 

v2} is connected, since blocks have no cut-vertices.  
Now k≥3 implies that G – {v1, v2} also is connected, 
and we let Vn= x .  Hence the proof.  

Section III: Edge Coloring 

 History of Edge Coloring: The edge-coloring 
problem is to color all edges of a given graph with 
the minimum number of colors so that no two 
adjacent  edges are assigned the same color. In this 
chapter, we historically review the edge-coloring 
problem which was appeared in 1880 in relation with 
the four-color problem. The problem is that every 
map could be colored with four colors so that any 
neighboring countries have different colors. It took 
more than 100 years to prove the problem 
affirmatively in 1976 with the help of computers. The 
first paper dealing wit h the edge-coloring problem 
was written by Tait in 1880. In this paper Tait proved 
that if the four-color conjecture is true, then the edges 
of every 3-connected planar graph can be properly 
colored using only three colors. Several years later, in 
1891 Petersen pointed out that there are 3-connected, 
cubic graphs which are not 3 colorable. The 
minimum number of colors needed to color edges of 
G is called the chromatic index  χ0(G) of G. 
Obviously χ0(G) ≥ ∆(G), since all edges incident to 
the same vertex must be assigned different colors. In 
1916, Konig has proved his famous theorem which 
states that every bipartite graph can be edge-colored 
with exactly ∆(G) colors, that is χ0(G) = ∆(G). In 
1949, Shannon proved that every graph can be edge-
colored with at most  colors, that is

1964, Vizing proved that 

χ0(G) ≤ ∆(G) + 1 for every simple graph. 
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Definition: An edge coloring of a graph G is a 
function f :E(G) → C, where C is a set of distinct 
colors. For any positive integer k, a k-edge coloring 
is an edge coloring that uses exactly k different 
colors. A proper edge coloring of a graph is an edge 
coloring such that no two adjacent edges are assigned 
the same color. Thus a proper edge coloring f of G is 
a function  

f: E(G)→ C such that f(e) =6 f(e0) whenever edges e 
and e0 are adjacent in G. 

Definition: The chromatic index of a graph G, 
denoted 

χ0(G), is the minimum number of different colors 
required for a proper edge coloring of G. G is k-edge-
chromatic if χ0(G) = k. 

 

Theorem 6:For any graph G,∆(G) ≤ χ0(G) ≤ 2∆(G) – 
1 
 
Proof: An obvious lower bound for χ0(G) is the 
maximum degree ∆(G) of any vertex in G. This is of 
course, because the edges incident one vertex must be 
differently colored. It follows that ∆(G) ≤ χ0(G). The  
Upper bound can be found by using adjacency of 
edges Each edge is adjacent to at most ∆ (G) – 1, 
other 
edges at each of its endpoints. Thus, 

1 + (∆(G) − 1) + (∆(G) − 1) = 2∆(G) – 1 

Colors will always sufficient for a proper edge 
coloring of G. 
Definition:  The set of all edges receiving the same 
color in an edge coloring of G is called a color class. 
Alternatively a k-edge coloring can be thought of as a 
partition (E1,E2,...,Ek) of E(G), where Ei denotes the 
(possibly empty) subset of E(G) assigned color i.   If 
a coloring ξ = (E1,E2,··· ,Ek) is proper, then each Eiis 
a matching. Therefore χ0(G) may be regarded as the 
smallest number of matchings into which the edge set 
of G can be partitioned. This interpretation of χ0(G)   
will be helpful in the proof of certain useful results. 
 
Theorem 7: Let G be a graph with m edges and let 
m∗(G) be the size of a maximum matching. Then,   

 

Proof: .Consider coloring of the edges with using q 
= χ0(G) colors α1,α2,··· ,αq and let Ei denotes the set 
of edges with color αi. We have m = |E1| + |E2| + ··· 
+ |Eq|≤ qm∗(G) 

Hence, and . 

 
Proposition: Path Graphs:χ0(Pn) = 2, for n ≥ 3. 
Proposition: Cycle Graphs:

 
, if n is even;  if n is odd. 

Proposition: Trees: χ0(T) = ∆(T), for any tree T. 
 

 

   Fig.7: 

 Fig. 7: A proper edge 3-coloring of a tree. 
 
Proposition:  Wheel Graphs:  χ0(Wn) = n − 1,  for 

 n ≥ 4. 

 

 Fig.8: A proper edge 6-coloring of a wheel. 

A 3-regular graph is also called a cubic graph. The 
best known cubic graph is the Petersen Graph (see 
Figure). The Petersen Graph is 3- regular with 
chromatic index 4. It is also not Hamiltonian. We will 
see now that these properties are connected. 
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Fig.9: Petersen Graph 

Theorem 8:Let G be a 3-regular graph with 
chromatic index 4. Then G is not Hamiltonian. 
Proof: Since G is 3-regular then it must have an even 
number of vertices. Suppose G is Hamiltonian, then 
any Hamiltonian cycle of G is even, so we can color 
its edges properly with 2 colors, say red and blue. 
Now each vertex is incident with 1 red edge, 1 blue 
edge and 1 uncolored edge. The uncolored edges 
form a 1- factor of G, so we can color all of them 
with the same color, say green. Thus, G must be 3-
edge-colorable, which is impossible. Therefore, G 
cannot be Hamiltonian.   
 
Theorem 10: Vizing’s Theorem: 
Definition: Let G be a graph, and let f be a proper 
edge k-coloring of a subset S of the edges of G. Then 
f is blocked if for each uncolored edge e, every color 
has already been assigned to the edges that are 
adjacent to e. Thus, f cannot be extended to any edge 
outside  
Subset S. 
 
(Vizing’s Theorem):  
       Let G be a simple graph. Then there exists a 
proper edge coloring of G that uses at most ∆(G) + 1 
colors. If G is a regular graph containing a cut-
vertex, then G is of Class 2. 

      Proof: If G is of odd order, then the result 
follows from above stated Corollary. If G is of even 
order, let G=H∪K, where H ∩K = {v}. We may 
assume that H has odd order (say k), and that every 
vertex of H has degree ∆(G), except for v whose 
degree in H is less than ∆(G). It follows that the 
number of edges of H is: 

And the result follows from Theorem: 
 
Vizing Adjacency Lemma: 
 
      A graph G with atleast two edges is minimal with 
respect to chromatic index if χ0(G − e) = χ0(G) − 1 
for every edge e of G. Since isolated vertices have no 
effect on edge colorings, it is natural to rule out 

isolated vertices when considering such minimal 
graphs. Therefore, the added hypothesis is that a 
minimal graph G is connected is equivalent to the 
assumption that G has no isolated vertices. 
 
Two of the most useful results dealing with these 
minimal graphs are also results of Vizing, which are 
presented without proof. 
 
Theorem 11: Let G be a connected graph of Class 2 
that is minimal with respect to chromatic index. Then 
every vertex of G is adjacent to at least two vertices 
of degree ∆(G). In particular, G contains at least three     
Vertices of degree ∆(G). 
 
Theorem 12:  Let G be a connected graph of Class 2 
that is minimal with respect to chromatic index. If u 
and v are adjacent vertices with deg(u) = k, then v is 
adjacent to at least ∆(G) − k + 1 vertices of degree 
∆(G). 
 
Edge Colorings of Planar Graphs: 

Definition: A planar graph is a graph which can be 
embedded in the plane so that no two edges intersect 
geometrically except at a vertex to which they are 
both incident. 

Now let us consider edge colorings of planar graphs 
here. Our main problem remains to determine which 
planar graphs are of Class 1 and which are of Class 
2. 

Proposition:  If G is a planar graph whose maximum 
degree is at most 5, then G can lie in either Class 1 or 
Class 2. It is easy to find planar graphs G of Class 1 
for which ∆(G) = d for each d ≥ 2 since all-star 
graphs are planar and of Class 1. There exist planar 
graphs G of Class 2 with ∆(G) = d for d = 2,3,4,5. For 
d = 2, the graph K3 has the desired properties. It is not 
known whether there exists planar graphs of Class 2 
having maximum degree 6 or 7; however Vizing 
proved that if G is planar and ∆(G) ≥ 8, then G must 
be of Class 1. We shall prove a similar, but weaker, 
result which may be found in his earlier paper. 

Theorem 13: If G is a planar graph with ∆(G) ≥ 10, 
then G is of Class 1. 
 Proof: Suppose that the theorem is not true, and 
 if  suppose  G is a  planar graph of   Class 2   with 
 ∆(G) ≥ 10. Without loss of generality, that G is 
minimal with respect to chromatic index. Since G is 
planar, there must be at least one vertex in G whose 
degree is at most 5. Let S denote the set of all such 
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vertices. Define H = G − S. Since H is planar, H 
contains a vertex w such that degH(w) ≤ 5. Because 
degG(w) >5, the vertex w is adjacent to vertices of S. 
Let v ∈S such that wv∈E(G), and let degG(v) = k ≤ 5. 
Then by above stated Theorem, w is adjacent to at 
least d − k + 1 vertices of degree d, but d − k + 1 ≥ 6 
so that w is adjacent to at least six vertices of degree 
d. Since d ≥ 10, w is adjacent to at least six vertices 
of H, contradicting the fact that degH(w) ≤ 5.   

As we mentioned above, this result can be 
improved to show that every planar graph with ∆(G) 
≥ 8 is of Class 1. However the problem of 
determining what happens when the maximum 
degree is either 6 or 7 remains open.  

Planar Graph Conjecture: Every planar graph 
with maximum degree 6 or 7 is of Class 1. 

Enumerative Aspects 

Sometimes we can shed light on a difficult problem 
by considering a more   general   problem.   We   
know   no   good     algorithm    to   compute   the 
minimum  k  such that  G  has  a proper  k-coloring,  
but we can  define  ψ(G;k)  to be  the  number  of  
proper  k-colorings  of  G.  Knowing   ψ(G;k)   for all 
k would permit  finding  the  minimum  k  where the 
value is  positive,  which  is  the  Ψ(G).   

Kirchhoff [1912] introduced this function as a 
possible way to attack the Four Color Problem. 

 

Counting Proper Colorings 

Definition: The function ψ(G ; k) counts the 
mappings f: V(G)→[k] that properly color G from 
the set [k] = {1,2,………..,k}.  In this definition, the 
k colors need not all be used, and permuting the 
colors used produces a different coloring. 

Example: When coloring the vertices of an 
independent set, we can independently choose one of 
the k colors at each vertex.  Each of the kn functions 
to [k] is a proper coloring, and hence ψ(Kn; k) = kn.  
 
      Although   K3 has  only  one  partition  into  three  
independent  sets  and none  into  four,   we   have    
ψ (K3;3) = 6    and    ψ (K3;4) = 24.   If   we   color 
V(Kn) in some order, the colors chosen earlier  cannot 
be used on the ith vertex, but there remain k-i+1 
choices available for the ith vertex no matter how the 
earlier colors were chosen.  Hence,  
 

ψ(Kn;k) = k(k-1)……. (k-n+1). 
 
We obtain the same count by choosing n distinct 
colors and then multiplying by n! to count the ways 
each such choice can be assigned to the vertices.   
The value of the formula is 0 if k< n, as it should be  
since   Kn   is  
K-chromatic. If we choose some vertex of a tree as a 
root, we can color it in k ways.  If we grow the tree 
from the root, along with a coloring, at every stage 
only the color of the parent is forbidden, and we have 
k-1 choices for the color of the new vertex.  
Furthermore, by deleting a leaf, we can see 
inductively that every proper   k-coloring arises in 
this way.    Hence ψ(T ; k) = k(k-1)n-1  for every n-
vertex tree. 

 

   Fig.10: 

 

   The answers are polynomials in k of degree n(G).  
This holds for every graph, and hence ψ(G ; k) is 
called the chromatic polynomial of G. 

 

  Conclusion: 

Graph coloring is still a very active field of research, 
I have studied and presented some important 
theorems on vertex coloring, edge colorings in this 
paper. We   know   no   good     algorithm    to   
compute   the minimum  k  such that  G  has  a proper  
k-coloring,  but  from known theorems and  proofs 
we can  define  ψ(G;k)  to be  the  number  of  proper  
k-colorings  of  G.  Knowing   ψ(G;k)   for all k 
would permit  finding  the  minimum  k  where the 
value is  positive,  which  is  the  Ψ(G). 
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Index of Symbols: 
G Graph 
V Set of vertices  
E Set of edges  
G-e Deletion of edge 
G-V Deletion of vertex 
[n] {1, 2,…………., n} 
G+H Disjoint Union of graph 
GxH Cartesian product of sets  
    n                 
    k 
 

 
Binomial Coefficient 

Pn Path with n vertices 
Cn Cycle with n vertices 
C(G) Circumference 
d1,…….,dn Degree Sequence 
d(v), dG(v) Degree of V in G 
∆(G)                              Maximum Degree 
δ(G)                               Minimum Degree 
d(u,v) Distance from U to V 
Pn(λ) Chromatic Polynomial 
ψ(G) Chromatic Number 
K(G) Clique graph 
Kn Complete graph 
K(n) Clique with n vertices   
Km,n Complete bipartite graph 
Wn Wheel with n vertices 
n(G)                    Order (number of vertices) 
T Tree, tournament  
αo (G) Vertex covering Number 
α1 (G) Edge covering Number 
β o (G)                               Independence number 
β 1 (G)                               Edge independence number 
W(G) Clique Number 
ψ'(G)                              Edge Chromatic Number 
χ0(G) Chromatic Index 
ψ(G ; k) Number of  proper k-coloring of G 
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	Other types of colorings:
	Not only can the idea of vertex coloring be extended to edges, but also be added with different conditions to form new structures and problems.



